# Data Collection for Sustainable Mobility Planning and Design

Pedram Fard<sup>1</sup> Amir Zarinbal<sup>2</sup> Jeffrey Casello<sup>3</sup>

iCity Student Presentation For University of Toronto 27 June 2016



<sup>1</sup>School of Planning, <sup>2</sup>Department of Civil and Environmental Engineering, <sup>3</sup>School of Planning and Department of Civil and Environmental Engineering

- Innovative techniques exist for traveler data collection.
- Natural experiment occurring in the Region of Waterloo;
- Possible to understand how investments in sustainable modes influence traveler behavior;
- Travel data matched with traveler perception allow for robust travel utility models.

# Background

**Transportation Data Collection** 

- Traditional survey-based methods require significant effort, produce limited results.
- New, passive methods exist for multiple modes:
  - For walking / cycling infrared, video, and loop detection;
  - For transit AVL / APC data becoming the norm.







**Transportation Data Collection** 

- New, passive methods exist for multiple modes:
  - For autos / multiple modes WiFi and Bluetooth detection;
  - With multiple sensors, allow for O-D and path identification.
  - Smartphone applications



## Region of Waterloo – LRT / BRT



# Goals

Project objectives are to understand:

- How important CTC is to overall transportation behavior in the Region;
- Traveler behavior in the CTC:
  - How many activities can be accomplished in one tour?
  - How long are tours in time?
  - How long are tours in distance traveled?
  - How do the above characteristics vary as a function of origin, access mode, household composition, etc.
- Traveler satisfaction



## Methods – WiFi Detection

**Proposed WIFI Positions in Downtown Kitchener** 



#### **Smart Phone Data Collection**

#### Collected Data:

- GPS coordinate, Bearing
- Speed, Acceleration
- Cell phone accelerometer
- Battery, Network info



#### Map: 11/17/2015

- Characteristics
  - iOS, Android (Smart phone, Tablets)
  - Battery efficient
  - No need for cell phone data
  - Minimum interaction from users
  - Rich management tools

#### **Smart Phone Data Collection**

- Implementation: City of Edmonton, AB
  - EdmoTrack: <u>www.edmotrack.com</u>
  - 1971 Participants
  - 76 Days
  - 5.8M GPS points
  - ~1 GB data set
- Analysis Capabilities
  - Users can review their trips
    - Website: Google Maps, App
  - Travel segment analysis
    - Activity, Moving Segment
  - Transportation mode analysis
  - Real-time mode detection



6:55 PM

EdmoTrack

Carrier 穼

#### **Smart Phone Data Collection**

- Additional applications ongoing with passenger travel:
  - University of North Carolina;
  - Rutgers University;
- Exploring possibilities for expansion into real-time asset tracking



## Integrating Traveler Interface

#### Seeking traveler satisfaction levels in real time

(Dunlop, Casello and Doherty, 2015):



# Timelines

#### **Project Schedule:**

- Hardware specification and locations ongoing;
- Implementation fall 2016;
- Data collection through 2017;
- Ongoing data analysis.

### Student Engagement:

- Ph.D. candidate arriving F2016;
- Postdoc position expected W2017 (applications being accepted!).

## **Contact Information**

Professor Jeffrey M. Casello, Ph.D., P.E.

jcasello@uwaterloo.ca

www.civil.uwaterloo.ca/wpti

519 888 4567 ext. 37538